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Abstract

Recent technological development in high throughput DNA sequencing has
opened many venues for biological systems analysis, where the data generation is
no longer the bottleneck but its analysis. The sequencing technological
advancements are being used in the study of a large and previously unknown
microbe world; this unknown world has revealed itself due to the possibility to
study taxonomic and functional diversity by means of culture-free metagenomic
sequencing. The metagenomes provide an outlook about the coding potential or
the probable metabolic functions of the studied microbial communities, thus just
the potential outcome. To study community wide gene expression, under strictly
determined conditions, metatranscriptomics by whole genome shotgun RNA
sequencing is the preferred tool. The challenge of studying metatranscriptomes is
quite complex, involving a correct experimental design, sequencing technology
knowledge, wet laboratory and bioinformatic skills. Here, we present a guide with
helpful hints, suggestions, tools, highlighting some of the complications down the
road of metatranscriptomics to ease your journey in this winding road.
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13.1 Transcriptomics, Metatranscriptomics, and Bacterial RNA
Complications
Transcriptomics is defined as the complete set of RNA molecules produced in a cell

(Güell et al. 2011). Metatranscriptomics is the assessment of environmental gene ex-

pression, be it in a population or a whole community. The rapid advance in sequenc-

ing technologies has allowed to rapidly increase the environmental genomics related

works. At the beginning of the Next Generation Sequencing (NGS) about some 10

years ago from now, most of the works were only able to describe microbial taxo-

nomic diversity by means of amplicon sequencing (16S/18S rRNA sequences), and

then the introduction of 454 pyrosequencing led to multiple groups start working

with Whole Genome Shotgun (WGS) metagenomics. Although the work was merely

descriptive at the beginning of WGS metagenomics, it threw light on both taxo-

nomic and functional diversity of the studied environments. Within the functional

diversity, metagenomics is only describing the potential outcome, but to test the

functional profile of a microbial community further methodologies for the expression

(metatranscriptomics), and translation (metaproteomics) are required. The race for

cheaper sequencing is still going on, and there is no such thing as a universal and
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unique best solution platform in the market but there are several technologies lead-

ing the competition like is the case for Illumina R©, and several newcomers are still on

its way with promising technologies like nanopores, and solid state based solutions.

The challenge of describing genome wide expression has been done historically by

means of microarray chips, and they have the advantage of describing overall gene

expression, but previous knowledge about the genomic sequence of the organism

is mandatory. A previous NGS technique, to describe microbe’s transcripts, is ex-

pressed sequence tags (ESTs); the current transcriptome sequencing strategies are

just an up-scaling of ESTs. While microarrays have been proved as an effective tool

for describing the expression profiles for model organisms, they are not still a major

player in metatranscriptomics. The cause of the microarrays relegated role in meta-

transcriptomics is that for complex environments with high diversity there would

be the need to sequence the metagenome, then select representative gene clusters,

and print them into the microarray, making it expensive and laborious. Although

it would be possible to design environmental microarrays looking for some particu-

lar genes (pathogenesis, virulence, etc.) or particular species, this would be limited

when comparing to current RNA-seq approaches (Westermann et al. 2012). The

main advantage of current NGS metatranscriptome is that is possible to associate

gene expression patterns of even unknown genes, thus showing light that the un-

known gene is transcribed under a particular condition. Hence, metatranscriptomics

aids to identify novel genes related with environmental functions, with no necessary

previous knowledge about any particular gene present in the sample (so no probe or

primer design needed). The main drawback of environmental NGS metatranscrip-

tomics is that most, sometimes >95%, of the environmental RNA isolated under

any situation corresponds to ribosomal RNA (rRNA), and the prokaryotes do not

have a polyA track in the 3 end of mRNA which is central for the transcriptome

sequencing of eukaryotes, because it allows to start reverse transcription from the

terminal polyA track and consequently the cDNA is almost exclu- sively formed

by mRNAs (Sorek and Cossart 2010). Although rRNA is useful to determine com-

munity structure and having by PCR an unbiased picture of the active taxonomic

diversity out there (by identifying, and annotating 16S rRNA fragments), when

trying to define the community functional profile, getting rid of rRNA could be a

challenge. However, with the current NGS technologies, it is feasible to think of hav-

ing less than 5% of mRNAs in the total sample, and still have thousands of cDNAs

to tell a story about, but nevertheless cleaning the rRNA is required. There has been

an active development for technologies trying to enrich the amount of total mRNA

and they could be divided in the following four main strategies: (1) Ribosomal RNA

capture (rRNA hybridization), (2) 5–3 exonuclease degrading processed RNAs, (3)

adding polyA to mRNAs by means of polyA polymerase (from Escherichia coli),

and (4) antibody capture of mRNAs interacting with selected proteins (Sorek and

Cossart 2010). The polyA and antibody capture methods are highly biased, thus

not recommended. The cDNAs enrichment is a major issue when designing the

overall strategy and experiments. A crucial factor in transcriptomics is whether you

have a reference genome sequence to map the transcripts against or you will be

performing de novo transcript assembly. It is the same situation with metatran-

scriptomics, if you have or not a reference metagenome obtained at the very same
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time to map against. The major advantage of having a reference metagenome is

that you can see if there is correspondence between raw gene abundance, and its

expression levels. There are plenty of options to map NGS sequencing data against

references like BWA, bowtie, and tophat (Langmead et al. 2009; Li and Durbin

2009), and at the end of the day you could build count tables with each transcript

abundance, and mapping Single Nucleotide Polymorphisms (SNPs) for each of the

transcripts. If you are just interesting to sequence the metatranscriptome without

metagenomic reference you should assemble the reads first using some NGS as-

semblers like SOAPdenovo, Velvet, Celera, and then perform ORF prediction with

some tool like Glimmer, or Metagenemark (see Table QG13.2). Up to date there are

plenty of resources to address a metatranscriptome study. This work intention is to

give an overall view of the metatranscriptomics process, experiments and analysis,

and put the spotlight in the plenty of guides, tutorials and resources that have been

systematically ordered for this purpose. Methodologically, the metatranscriptome

uses the very same techniques and analytical tools as is sin- gle species precursor,

the transcriptome.

13.2 Get to Know the Basics on Transcription Before Going
Further
Previous work on systematizing the huge amount of information related to RNA-

seq experiments in microorganisms has been done, and we strongly recommend to

check out the biological and technical information before getting into the exper-

imental design. A great starting point for understanding our current knowledge

about bacteria transcription could be assessed in two excellent reviews the first

by Sorek and Cossart 2010, and then read the review by Güell and collaborators

(2011), both works on Nature Reviews Microbiology. Some previous protocols on

metatranscriptomics are available as well (Gilbert and Hughes 2011), though think-

ing on a virtually retired technology (454 pyrosequencing), but all principles are still

valid. The literature recommendations are based on first have a general outlook of

what we know about bacteria gene regulation and how this is being enriched by

transcriptomics. We also recommend to check some of the works to see the final

publication output of metatranscriptomics, and how this is reported (Beńıtez-Páez

et al. 2014; Frias-Lopez et al. 2008; Gilbert et al. 2008; Gosalbes et al. 2011; Hewson

et al. 2009; Franzosa et al. 2014).

13.3 Experimental Design
If you want to try metatranscriptomics, the first thing would be choosing what kind

of experimental approach is correct to your needs, and budget. Basically, there are

two great first approaches to it, a qualitative or quantitative (Fig. 13.1).

For metatranscriptomics using RNAseq, the qualitative approach is highly valu-

able, because even the high amount of rRNA obtained, this could be used to de-

scribe community structure and describe the metabolically active members of it.

The databases with 16S rRNA are still the best repositories for bacteria taxonomic

diversity out there, and even though it may not be possible to perform the tasks

done with PCR microbiome amplicons like multiple alignments, and diversity met-

rics derived from them (like Unifrac, Phylogenetic Distance methods, etc.), it is
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possible to identify by homology each of the sequenced reads, and use some tools

like the RDP classifier or Greengenes to classify the overall active bacteria diver-

sity (Lozupone et al. 2011; Cole et al. 2009; Schloss 2010; DeSantis et al. 2006).

The rRNA classification for a metatranscriptome has the additional advantages of

not biasing the diversity due to primer election, and PCR amplification effects.

Moreover, the expected 5 % of mRNA helps to identify expressed genes in the com-

munity, some of the genes are going to have known homologs in the databases and

they will be annotated accordingly but for the orphan genes (with no homologs

in DBs) we will have information about them being expressed under the tested

situation, something not into reach with metagenomes and so the importance of

knowing previously the tested variables and the metadata that will be available for

future comparisons. The quantitative approach is the most used when doing tran-

scriptomes on single organisms. This is because this approach allows us to detect

significant differences between the overall gene expression in contrasting situations.

Single organism transcriptomes in several contrasting experimental conditions had

been proved to be a powerful tool when looking for Differential Gene Expression

(DGEs). The success of getting DGEs depends on several factors like the number of

conditions tested (biotic, abiotic), the number of biological replicas, sequencing cov-

erage, read length. The sequencing coverage and read length could be easily planned

if there is a reference genome. If there is no such thing like a reference genome one

rule would be to dedicate equal sequence coverage for each of the replicas (i.e., if

using Illumina HiSeq 2500 R© dedicate a single sequencing lane to each replica). If

you are planning to conduct a metatranscriptome it would help a lot if you have

some preliminary data on helping you to answer the basic how many sequences do

I need? This could be the result of pilot studies on 16S rRNA amplicon diversity, a

previous metagenome, or even diversity estimates from related systems of what you

are currently studying. There are several tools aiding with the design and replica

number in RNA-seq experiments, like EDDA (Experimental Design in Differential

Abundance analysis) which is available like an R’s Bioconductor package (EDDA),

or as a web server (Luo, et al. 2014). Within EDDA you can upload some pilot data

you might have and test about the experimental design. The key questions are: How

many replicates should I use? How much sequencing depth? Is the experimental de-

sign helping out to capture biological variation? One rule of the thumb would be to

use the same number of replicas for each condition tested and a minimum number

of two replicates per condition to gain insight into the biological variance. Thus,

considering one treatment and one control groups would be the simplest, and most

widely used experimental design (See Table QG13.1). If you are trying a nested

experimental design the number of replicates would increase dramatically but this

is out of the reach of this chapter, please refer to experimental design guides, a good

starting point for this was provided by Knight and collaborators (2012).
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Fig. 13.1 Representation of the wet-lab procedure workflow.

13.4 What Sequencing Platform Is the Best for
Metatranscriptomics?
This is the most frequent question for most of researchers entering into the meta-

omics world. There is no easy answer for this, as expected. The main trade-off

would be between the overall cost, the read length, and the sequencing depth of

each platform. The current major used platform is Illumina R© due to its overall

cost- benefit, though it has several possible confi gurations (MiSEQ, HiSEQ, etc.),

the major platform used not that long ago was 454, and now is practically retired

from metatranscriptomics, the message here is that the market is still far from being

stable and new players are coming all days into it. The actual major players are:

Illumina’s HiSeq (X, 3000/4000, NexSeq, High-Output), and MiSeq, Life Technolo-

gies (PGM, Proton), Pacific Biosciences (RS), and the former 454. The sequence

read length spans from 50 bp (Illumina) to 1.5 kb (PacBio), and the cost per Mb

goes from USD$ 0.06 (Illumina) to USD$8.72 (454), and the output yield goes from

40 Mb (PacBio) to 300 Gb (Illumina). There are some recent works that show that

in overall the gene expression profiles are similar across platforms and the main

differences are the costs for detecting splice variants (Li et al. 2014). But keep in

mind that the price is rather limiting but not the only variable to consider, please

take into account the quality of the data, the support for the available technol-
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ogy (aligners, assemblers) and compare the options offered by different providers,

there are some places like http://allseq.com and https://genohub.com where you

can quote multiple providers all at once. Also keep in mind that you can mix two

strategies, i.e., Illumina’s deep coverage mixed with PacBio long reads to aid in

the assembly process. The main questions are: How many samples do you want

to sequence? What is your desired read length? How many reads do you need per

sample? How much money do you have?

13.5 Sequencing Depth or the Number of Aligned Reads
Required for a Reliable Analysis
A bacterial genome is considered complete when it has an 8X coverage depth. For

an average 5 Mb genome it would be necessary to sequence at least 40 Mb to have

that amount of coverage. When talking about a metatranscriptome in the ideal

scenario one would have previous data about the studied system, like the species

abundance with 16S rRNA amplicon sequencing. Lets say that a given environment

hosts 700 species and assuming a 5 Mb genome per species one would need at

least 28 Gb of sequencing to have an 8X coverage depth. This is assuming some

unrealistic situations like having equal abundances for each species and genes, and

that they are all the same genome size. This is not an easy task, but with Illumina’s

deep sequencing it is expected to generate up to 300 Gb of sequencing that would

be equivalent to a 85X coverage for each species of this hypothetical scenario, and

considering that not every gene is always being expressed we can have an ultra-

deep coverage of the metatranscriptome that can even be multiplexed. Most of the

meta-omics analysis are highly biased to over-represented features, even of ultra

deep sequencing we cannot be certain that we are not recovering rare species, or

genes because of the sequencing effort. The rule of the thumb for sequencing depth

is to be equitable for each condition and replicate tested.

13.6 General Considerations for Wet-Lab
When working with RNA is important to pay close attention to cleanliness of the

bench working area, equipment and reagents. All living cells and all cell types pro-

duce intracellular and extracellular RNases. RNases are essential for the regulation

of gene expression and are an important part of the immune system; that is the rea-

son why there are several types of these enzymes, some of which are very resistant

to inactivation treatments. Some RNases have several disulfide bridges so even after

frozen or denatured they can be reactivated. RNase contamination main sources

are the skin, saliva, hair, perspiration, clothing, fungi, bacteria, mites, plant, or any

living cell (Sambrook and Russell 2012). This is why you should always take the

following precautions: 1. Always wear gloves.

2. Change gloves frequently. Every time you touch the phone, the handle of the

fridge, your face, skin, etc. you should change gloves.

3. Wear clean gown. The lab coat protects the experiment from dust on the clothes.

4. Use RNase-free tips and tubes. Providers indicate when their products meet this

quality criterion. Bags and boxes must remain closed otherwise they are no longer

RNase-free.

5. Work in a specific clean area with low traffic and free from air currents.
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6. Use RNase-free reagents. We recommend using commercial kits, and reagents

designed to work with RNA. Remember, tubes and bottles must be handled with

gloves and must be closed as long as possible.

7. Clean every material to be used in a way that is free of RNase (see Sect. 13.6.1).

Some labs still take extra precautions such as:

8. Use filter tips to avoid aerosols that could contaminate the sample.

9. Have a unique set of pipettes to work with RNA.

10. Aliquot reagents to reduce handling.

11. Use an RNase-free fumehood or cabinet.

12. Have a clean room equipped.

13.6.1 Treatments for RNase Cleaning
Contrary to common sense the autoclave does not inactivate all RNases. All the

water in contact with the RNA must be free of RNase. The most commonly used

protocol for this is treatment with DEPC (diethyl pyrocarbonate). DEPC covalently

modifies the secondary amines inactivating RNases permanently. However, it also

modifies RNA so it must be destroyed before use. For this treatment, a 0.1 % DEPC

solution is prepared and incubated for 12 h at 37 C. Then, the solution is autoclaved

for 15 min for DEPC degradation. Buffers and other reagents with amines (Tris,

MOPS) should not be incubated with DEPC. To prepare these buffers water is

first treated and then reagents are dissolved. All nondisposable material should

be treated. Glassware should be washed and baked at 240 C for 4–16 h. Another

protocol is to dip the glassware in water with 0.1 % DEPC for 12 h at 37 C and

then autoclaved for 15 min to remove DEPC. It is important to wrap with foil

glassware before putting it in the oven or autoclave. It is also recommended to have

a clean area for all reagents and materials to be used. Electrophoresis tank must

also be treated; it should be washed with detergent, rinsed with RNase-free water,

and finally rinsed with ethanol. Some companies sell DEPC alternatives that do not

require autoclave. RNase inhibitors are commercially available, inhibitors are high

affinity proteins specific for RNase type A. RNase inhibitors are expensive, and it

is recommended only to preserve the purified sample.

13.6.2 RNA Purification
Using commercial kits is recommended, mainly because they ensure that the solu-

tions are RNase-free. Please pay attention to the amount of sample that is recom-

mended by the supplier as excess can result in very low efficiencies. RNA purifi-

cation is divided into the next steps: sampling, RNA stabilization, cell lysis, RNA

isolation and treatment with DNAse I. Here we describe various protocols for each

of these steps.

13.6.3 Sampling
The samples should be acquired quickly and aseptically. The sample should be

processed immediately or snap-frozen. Generally, samples are frozen directly on

the field in either liquid nitrogen, or dry ice/acetone to stop metabolism without

damaging cell structures, however when samples are thawed RNases will be active.

When planning your sampling you should anticipate how to stabilize RNA because

usually this is done before freezing (see below).
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13.6.4 Stabilization
As previously mentioned, all cells have intracellular RNase, the mRNA in bacte-

ria generally have a few minutes life span so RNA can be degraded while purified.

Moreover, transport and purification can induce the synthesis of new mRNA chang-

ing expression profiles. Several reagents may serve to inactivate endogenous RNase.

The simplest is to add to the sample a 1:10 solution of 5 % phenol in ethanol.

Another option is to start with the isolation process before freezing adding guani-

dinium thiocyanate–phenol–chloroform solution, commercially known as TRIzol R©,

Qiazol R©, or TRi R©. One of the most popular stabilizers is RNAlater R© containing

EDTA, sodium citrate, and ammonium sulfate, it is used for all cell types and has

been tested in bacteria. RNAprotect R© is a stabilizer designed for bacteria; this

works for gram-negative and -positive bacteria.

13.6.5 Cell Wall Lysis
The three most popular methods to lyse the cell wall are: mechanical disruption

(bead beater), enzymatic lysis (lysozyme or lysostaphin) and proteinase K digestion.

In axenic cultures lysate efficiency is important for the total amount of RNA but

when it comes to communities, lysis will also affect RNA distribution, as some

bacteria are more sensitive to some treatments. If the aim is a qualitative study, it

probably is best to mix all methods of lysis, to obtain as many as possible RNA, but

if you want to make a quantitative study, you would better use a mechanical method

that can lyse all bacterial types and is the most reproducible one. When working

with soil communities is important to consider the contamination with humic acids,

as they inhibit further PCR reactions. PowerSoil R© kit is specially designed to deal

with humic acids. If you do not have access to the kit, we recommend washing the

cells several times with phosphate buffer and follow a purification protocol with

CTAB.

13.6.6 DNase I Treatment
RNA samples often have trace contamination of genomic DNA, so the final step

is to treat the samples with DNAse I, and its subsequent inactivation. DNAse I

can interfere with the following steps, if not inactivated. Once again RNA can be

purified by extraction and precipitation or by silica columns. The RNeasy R© kit

allow using DNAse when the RNA is bound to the column, which prevents the

second purification. To prevent freezing and thawing we suggest to aliquot pure

RNA samples. Store samples at 80 C before and after purification.

13.6.7 RNA Quality Determination
There are three factors to consider in determining the quality of a RNA sample:

concentration, purity, and integrity. These three factors are important in deciding

whether to continue the experiment or if repurification are necessary. We always

advise to perform an UV absorbance spectrum (220–350 nm), NanoDrop R© instru-

ment allows to measure small volumes from 1 L; absorbance at 260 nm indicates the

concentration of nucleic acids, absorbance at 280 nm allows to estimate the protein

concentration; while 230 nm absorbance indicates the presence of humic acids salts

or compounds that were used for purification. The disadvantage of this method is
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that it cannot determine if the RNA is degraded and this not either distinguishes

DNA contaminations. It is generally considered good quality samples when the

260/280 ratio is greater than 1.8 and the 260/230 ratio is greater than 1.7. If the

sample is not pure, the concentration may be overestimate as contaminants also

absorb at this wavelength (Fig. 13.2). Fluorescent dyes detect lower RNA concen-

trations, and these only emit in the presence of nucleic acids, so RNA concentration

is more reliable. Fluorescent dyes, generally, do not discriminate between different

nucleic acids and this technique cannot determine the purity and integrity of the

sample. The agarose gel electrophoresis allows knowing RNA integrity; the criterion

for determining that the RNA is intact is to observe 23S and 16S rRNA bands in a

1.8:1 ratio. The presence of genomic DNA can be identified in agarose gel because

its size is much greater than 23S, but it do not allow us to estimate other kinds

of contamination. One of its great advantages is that it is an inexpensive method

that can be done in most laboratories; nevertheless, it is a qualitative method. The

2100-Bioanalyzer R© is a quantitative method that uses cartridges ready to use for

capillary electrophoresis. This equipment generates electropherograms and includes

software that integrates the peaks to determine the RNA integrity number (RIN;

Fig. 13.2). The big disadvantage of Bioanalyzer equipment and cartridges is their

price, this method also allows to determine sample concentration.
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Fig. 13.2 Assessing RNA quality. (a) NanoDrop R©’s absorbance UV spectrums,

in the left plot an ideal sample with Pure RNA is shown, in the middle and right

plots possible contaminations are shown. (b) Bioanalyzer R© electropherogram profi

les showing in the left plot the best case scenario with pure RNA, in the middle a

plot of a partially degraded sample, and in the right a shred sample.
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13.6.8 Enrichment of mRNA

rRNA

rRNA

rRNA

mRNA

RNA purification
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rRNA hybridization
5' monophosphate 

exonuclease

RNA fragmentation

1st cDNA strand 
synthesis

2nd cDNA strand
synthesis
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CCCCCC
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P
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5' Phosphorylation

Ligation
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NGS Library

Fig. 13.3 The metatranscriptomics library preparation process. The main two

strategies for mRNA enrichment are shown, first using rRNA separation by means

of hybridization with 16S and 23S rRNA probes, and the second one is a depletion

of rRNAs by means of a 5-exonuclease. Then, first strand of cDNA is synthe-

sized by means of reverse transcriptase using random hexamers. Second strand of
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cDNA is synthesized by a DNA polymerase. Finally, sequencing adapters need to be

attached to the cDNA strands, and this could be done either by PCR or by ligation.

One of the most complicated steps in studying bacterial transcriptomes and meta-

transcriptomes is mRNA enrichment; in eukaryotes the problem is trivial by the

presence of the polyA tail. The two most popular strategies to enrich the mRNA

are rRNA hybridization, and degradation of processed RNA. rRNA hybridization is

based on magnetic microbeads and oligo mixtures which hybridize with 16S and 23S

(MICROBExpressTM, and Ribo-ZeroTM). The hybridization method is the most

popular because RNA integrity is not required. This approach is sequence specific

and does not eliminate all bacteria rRNA, for example those from high GC content.

Another limitation is that oligos can also hybridize with some mRNA. Degrada-

tion of processed RNA requires a 5 monophosphate exonuclease for the removal

of rRNA (mRNA-OnlyTM). Most mRNAs carry 5-end triphosphates therefore are

not degraded. 5 monophosphate may be created by pyrophosphatase or endonucle-

ase cuts. The advantage of this method is that sample diversity does not interfere;

however, it requires very pure RNA as exonuclease is susceptible to inhibition by

impurities; this also requires high RNA integrity (RIN >8) otherwise exonuclease

degrades both rRNA and mRNA (Fig. 13.3). There are other strategies that enable

deeper sequencing such as immunoprecipitations or duplex-specific nuclease diges-

tion (DSN), these type of approaches only makes sense for specific experiments since

strong bias is introduced. If your interest is to work with small RNA, these can be

purified from an agarose gel. Specific biotinylated primers can be designed to elimi-

nate other sequences, whether rRNA which are not recognized by hybridization kits

or some other dominant messenger in the sample (Li et al. 2013).Transcriptomic

analyses are based on cDNA synthesis so the polarity (5–3) information is lost.

The polarity of the transcripts can give important information for antisense RNA

and novel transcripts identification. If your interest is to know the polarity, there

are protocols that incorporate dUTP in the synthesis of the second strand, allowing

subsequent removal by uracil-DNA-Glycosylase (UDG) treatment (Parkhomchuk et

al. 2009). The rapid development of sequencing technologies, and larger sequencing

yields soon will make possible that rRNA would only need to be filtered in silico.

13.6.9 Library Preparation
Regardless of sequencing platform that will be used, the general idea is the same:

to produce cDNA of a certain size (50–400 bp) that is flanked by adapters. So

library preparation requires fragmenting the RNA, first strand synthesis, second

strand synthesis, coupling adapters, and validating the library. Sequence service

providers can perform the library preparation. cDNA should be of a certain size

to optimize sequencing, depending on the platform is the size fragments must be.

Fragmentation can be done with enzymes, metals, heat or sonication. Incubation

times for fragmentation must be optimized for each case, as the integrity of each

sample is usually different. The synthesis of the first cDNA strand is performed by a

reverse transcriptase and generally random hexamer primers are used. The synthesis

of the second strand of DNA is done with a DNA polymerase. In this case, primers

with guanines at 3 are generally used since reverse transcriptase leaves a polyC
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overhang (Fig. 13.3). Sequencing adapters include a region for binding to platform

support and a region for primer hybridization. Additionally, they can include a

barcode that serves to identify the sample if several samples are mixed in the same

run (multiplexing). Depending on the used adapter kit is how many samples can be

multiplexed. Illumina allows sequencing of the complementary strand, which allows

for longer reads (pair-end). The adapters can be attached by a PCR or ligation

reaction (Fig. 13.3 ). Currently the most widely used platform is Illumina for which

there are kits like TruSeq R© and SMARTer R©. The superiority of the former is that

it allows multiplexing up to 96 samples while SMARTer R© allows only 16 samples.

The advantage of the latter is that you can start with 1 ng of enriched RNA whereas

TruSeq R© requires at least 100 ng (Alberti et al. 2014). The last step is to validate the

library. DNA concentration and size can be determined by the 2100-Bioanalyzer R©
coupled to a DNA chip like Agilent DNA 1000. We recommend contacting your

sequencing provider, they have proven experience doing NGS on a daily basis, and

they can assist you in fine-tuning the details about your samples. Sometimes your

providers would even suggest some new sequencing platforms you have not noticed

yet with higher yields at lower costs.

13.7 Bioinformatic Analyses

Filtering reads (QC and rRNA)
Download libraries.
De-multiplex (split sequences by its barcode).
Remove sequencing adapters.
Sequence trimming by quality.
Remove rRNA.

Sharing
Upload raw FASTQ files to SRA (NCBI).
Upload annotated dataset to MG-RAST.

Statistical analysis
Build and transform the matrix.
Establish samples similarity: heatmaps, PCA and rlog/log .
Analyse differential expression: heatmaps, Volcano graphs.
Determine p-value.
Give meaning to the data.

2

Annotation
Annoteate with: BLAST, KASS (Kegg), or M5NR (MG-RAST).

Aligning reads to a reference
Map with Bowite2 or BWA.
Count occurrence.

De novo assembly
Assemble with Velvet, 
SOAPdenovo or Trinity
Cluster results.
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Fig. 13.4 The metatranscriptomics bioinformatic overall process. The main steps

are: Filtering reads, choosing between aligning to reference sequences and per-

forming de novo assembly, annotation, statistical analysis, and uploading the raw,

assembled, and annotated data sets to the appropriate repositories.

The metatranscriptome analysis involves a conceptual and technical challenge

when dealing with huge amounts of multivariate information. There is an inter-

mediate level of computing knowledge required to be able to deal with this data,

and we want to provide some basic steps previous to metatranscriptome analysis

that should be fulfilled if you do not have bioinformatics experience, the overall

bioinformatic analysis process is summarized in Fig. 13.4.

First basic steps:

1. Use the terminal (Linux, UNIX, Mac OS) or if you are running on Windows,

immediately switch to Linux and learn how to use it. Use Ubuntu as it is the most

supported Linux out there. And then, look for a Linux command line interface tu-

torial. Completing this exercise is highly recommended (see Table QG13.2).

2. Download your brand new transcriptome files from your provider FTP or pro-

vided URL. The file is normally a FASTQ, which is a text that contains both the

sequence read and the base calling, encoded in ASCII characters (non directly hu-

man readable). Use any web browser, the web browser negotiates different transfer

protocols (FTP, HTTP) in a Graphic User Interface (GUI), or you could automate

this with Linux/UNIX’s commands like wget, rsync, curl, and ftp.

3. Unzip and manipulate the files only on the terminal, this means in the Command

Line Interface (CLI, also known as terminal). If you are using your mouse and click-

ing the files to open/unzip them, you will be out of your computer resources pretty

soon.

4. Install the compilers (transforms source code to an executable), this is mandatory

to install software from source, on Ubuntu’s terminal type:

sudo apt-get install build-essential

For Mac OSX google: “Install the Command Line C Compilers in OS X” and follow

the instructions.

5. Download your first program (fastx toolkit, see Table QG13.2), and follow the

install instructions.

6. Install R (see Table QG13.2).

7. Install Bioconductor (see Table QG13.2).

8. If you manage to do all the above tasks you are ready to install, and run almost

any existent tools on Linux/UNIX.

If you do not want to improve your CLI skills, there are Graphical User Interfaces

(GUIs) designed to cope with most of the sequence files processing like the Galaxy

Server (see Table QG13.2). If you manage to do a local installation, you are doing

it right. This is for the basic processing of the data, QC filtering, and trimming.

Also, this is manageable by most of modern personal computers. The overall process

could be divided in the following stages: (1) Quality Control (QC), (2) Mapping

against reference sequences, (3) de novo assembly, (4) annotation, (5) statistical

analysis, (6) sharing your results. Each stage is described with useful hints at every

step:
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13.7.1 Sequences Quality Control
1. Split the libraries into individual files, this is also known as de-multiplexing, if

you are using barcodes to mix several samples in a single run. Here the samples are

split based on its barcode sequence.

2. Remove sequencing adapters. Removing this sequences that were used as tem-

plates for the sequencing is important and could help to further steps of mapping

or assembly.

3. Quality Control, sequence trimming (and grooming). Each sequenced base has

its own quality value, which is known as Phred score. Phred score serves as a proxy

probability calculator, a Phred value of 30 accounts for 1 error every 1000 bases,

or a 99.9 % of accuracy. This is a good standard to make a cut-off. Visualize the

overall quality of your sequences via boxplots.

4. Filter rRNA. A quick way to do this step can be done with an rRNA DB and

MegaBLAST (Altschul et al. 1997). There are other strategies using Interpolated

Markov Models like Infernal and SSU-align and will help at this stage (Nawrocki

et al. 2009; Nawrocki 2009).

The fast toolx is a relatively easy way to perform the QC steps, plot qualities, and

manipulate FASTA/FASTQ files. If command line is not an option, you should

try the Galaxy servers to perform de-multiplexing, trimming adapters, and quality

control (NGS QC and manipulation). The trade-off between working on the cloud

or locally is the speed and fine tweaking of the pipelines, which are better controlled

in our own computers. There are plenty of tutorials helping beginners to become

familiar with Galaxy (see Table QG13.2; Kosakovsky et al. 2009).

13.7.2 Mapping Against Reference Sequences
1. Mapping against the reference metagenome/genomes. Use short read aligners. If

there is no reference sequence(s), go to Sect. 13.7.3.

Here the standard options for short read mapping are Bowtie2 (Langmead et al.

2009), and BWA (Li and Durbin 2009). All of the mentioned programs are freely

available online to be installed in CLI. There is also a cloud option provided by

Galaxy under NGS Mapping. You should provide reference sequences, index the

references if you are running this locally, and your metatranscriptome fastq files.

After the alignment, you need to take the SAM/BAM resulting file and count the

occurrence of each gene model (if available). The counting of each gene could be ac-

complished with R. R is a computer language intended for statistical computing and

graphics, and the main recommended tool for downstream analysis (R Development

Core Team 2004). For this purpose, use the libraries Rsamtools, summarizeOver-

laps, and featureCounts of BioConductor (Huber et al. 2015).

13.7.3 De Novo Assembly
1. De novo assembly of metatranscriptome. This step applies if you do not have a

reference, or you can do this step with the reads that were not aligned to it. You can

perform de novo assembly if you do not have reference sequences, keep in mind that

the most frequent limiting factor during assembly is the amount of RAM memory of
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your computer. The amount of time required for assembly could last from minutes

to days depending on the amount of sequences, and its complexity (repeats, SNPs,

transcript forms, etc.). The most frequent choices are Velvet (Zerbino and Birney

2008), SOAPdenovo (Li et al. 2009), and Trinity (Grabherr et al. 2011). There is

no clear better option when talking about assembly, you can try each one of them

and can cluster the overall results at the end (with CD-HIT-est; Huang et al. 2010).

All the mentioned programs are freely available online ready to be installed in your

CLI. Trinity, has a cloud Galaxy based service that you could give a try (see Table

QG13.2), this is recommended if you do not have enough computational resources

locally.

13.7.4 Annotation
1. Annotate each transcript. If you have a metagenomic/genomic dataset already

annotated, the coordinates could help you. Otherwise search by homology must be

done. If there are no homolog sequences, you can try to use some RNA structural

tools.

For the annotation, a hierarchical schema is suggested. If you know the species you

are comparing and there are available annotated genome sequences for them, you

could perform BLAST searches directly to them (Altschul et al. 1997). Then, for the

sequences without homologs, go up to the next hierarchy a bacterial DB (see Table

QG13.2). If there are still not homologs, try the largest DB, the NCBI’s NR (see Ta-

ble QG13.2). This could be tricky if you do not have the computational resources or

the skills to perform it. Don’t panic, there are some other cloud-based solutions like

the KAAS, which is the KEGG’s Automatic Annotation Server, where you can up-

load your assembled transcripts and annotate them, this is the most fast annotation

tool that we are aware of (Moriya et al. 2007). The other main web-server solution

is MG-RAST, which has the most elegant DB design which is named M5NR (Wilke

et al. 2012). M5NR merges information from plenty of Databases in a nonredun-

dant way like the annotation ontologies COG, SEED, eggNOG, KEGG, UniProt,

IMG, Patric, RefSeq, SwissProt, TrEMBL, GO, and the NCBI’s NR (Tatusov et al.

2000; Overbeek et al. 2014; Powell et al. 2014; Kanehisa and Goto 2000; UniProt

Consortium 2008; Markowitz et al. 2008; Wattam et al. 2014; Pruitt et al. 2005;

The Gene Ontology Consortium 2014), all this information is accessible through

the metagenomics analysis server (MG-RAST; Glass and Meyer 2012). This is the

source to have the most cost-effective annotation pipeline for a regular wet-lab,

though you will not learn any bioinformatic skill with this. The MG-RAST accepts

uploads of FASTQ or regular FASTA files but be aware that you will need to upload

some experiment metadata, the data remains private until you ask the MG-RAST

system to release it to the public, so it also serves as a sequence repository. If no ho-

molog is present in your DB, you could use some tools like tRNA-SCAN (Lowe and

Eddy 1997), and RNAFold (Denman 1993) to find out if there is a chance to clas-

sify your sequences by its secondary structure (i.e., hairpins, loops). The structural

look at your data is demanding in computational and human resources to inspect

the results. This approach could be useful if you are looking for particular class

or regulatory elements (sRNAs, riboswitches). An excellent overview on annotation

that should be reviewed, to understand the complexity of using multiple evidences

to annotate, was done by Yandell and Ence (2012).
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13.7.5 Statistical Analysis
1. Build a count matrix. This could be done by counting the mapped reads or to

cluster the sequences of all the experimental conditions by its identity and count

the number of occurrences in each sample/experiment. This step is required for

parsing the annotation data to the Data Analysis pipeline. If you have processed

your datasets on MG-RAST there is an option to export the whole dataset in BIOM

format (http://biom-format.org/). The BIOM format is an acceptable input to R.

There are ways to switch from BIOM to plain tabulator separated file with biom-

convert tools. If you do not feel like using BIOM matrix, you could build a “table”

where each row represents each individual gene and each column accounts for each

sample/replica, save the file in plain text would work fi ne for R’s input. In R, be

sure to read the data as matrix.

2. Transform your matrix. There are several methods to accomplish this, one is the

regularized-logarithm transformation (rlog), when measuring distances and sample

similarities, and other normalizations like DESeq, which uses a negative binomial

distribution, are preferred for differential expression. The log 2 and regularized log-

arithm transformation, also known as r-log, are the usual choice. This works to

normalize your data between experiments, samples, and replicas, diminishing the

importance and dependence of mean values. To perform this we recommend to use

the R’s Bioconductor package DESeq2 and its function RNAseqGene (Love et al.

2014).

3. Assess sample/treatment similarity, using heatmaps, Principal Component Anal-

ysis and calculating the distance on the r log/log 2 transformed data. With the

transformed matrix, we can now describe the dissimilarity between samples/ repli-

cates/experiments by means of clustering analysis. The preferred option is to

use heatmaps and Principal Component Analysis (or whatever ordination method

you feel comfortable with). For this purpose we recommend to use the packages

heatmap.2 and the function plotPCA, part of DESeq2 package.

4. Perform the differential expression analysis. In this point, you need to calcu-

late the log 2 fold changes between your treatments (control vs. experiment). Here

you will have to calculate the mean, log 2 fold change, its standard error, and test

the null hypothesis that there is no change between treatments on each gene and,

thus, reported as a p-value. For this step of the process, you could employ plenty

of available tools some of the most used ones are: edgeR, DESeq, baySeq, NOISeq,

and Cuffdiff (Trapnell et al. 2013; Tarazona et al. 2011; Hardcastle and Kelly 2010;

Anders and Huber 2010; Robinson et al. 2010). The differences between the tools

are based on what tests and assumptions they are based upon: Fisher’s, negative

binomial, parametric or nonparametric methods.

5. The p-value of RNA-seq is not what you are used to. You need to perform mul-

tiple testing correction, to calculate the amount of false discovery rate (FDR), or

in other words the amount of false positives, and then assess the significance of

the adjusted p-value. Remember that this is to answer how much of false positives

could be accepted. There are multiple tools to calculate FDR and corrected p-values

like metagenomeSeq which is available as part of Bioconductor and a standalone

webserver (metastats), thus just working for pairwise control and experiment com-

parisons. This can also be done with DESeq2 package and its p-adjusted (p-adj)



Peimbert and Alcaraz Page 17 of 18

values.

6. Visualize the amount of significant differentially expressed genes. You can do this

by means of Volcano plots, and heatmaps. If you are running a pairwise comparison,

one way to accomplish this is by means of Volcano plots (log 2 fold changes versus

significance), or an MA plot (M = log ratios, A = average). This is done also by

R’s Bioconductor.

7. Connect the most abundant features with its annotation. To this purpose is ex-

tremely helpful to use an ontology. An ontology is a controlled dictionary about

gene functions, organized in hierarchical way like: SEED, COG, GO, KO. After

determining the overall significant differentially expressed genes, usually they are

coded with an identifier to reduce the amount of data loaded into R. A new table

with the DE-genes and its annotations is extremely useful. To build that table the

use or relational databases (MySQL, PostgreSQL) makes this an easy task.

8. Make sense of the known and annotated genes to direct new working hypothesis

about their gene expression under the tested circumstances. The whole dataset of

significant genes derived from the previous steps could be divided into two main

groups: genes with known functions, and genes with unknown functions. Most of

the functional analysis will focus on the known annotated genes, and it is the easier

part of the dataset to explain but most probably a large amount of the data from

your metatranscriptome will be transcripts of unknown function and thus are suit-

able candidates to design further experiments to discover their function (mutants,

heterologous expression, etc.). An expressed gene is better than a total hypotheti-

cal predicted gene. For the genes with a known function, a process of data mining

will be necessary to get the most about the functions and processes involving their

participation. There are several starting points for gene function data mining like

the Protein Data Bank, UniProt, Pfam, InterPro, EcoCyc, STRING, and KEGG

(Berman 2000; Finn et al. 2008; Karp et al. 2002; Szklarczyk et al. 2011; Kanehisa

and Goto 2000; Hunter et al. 2012). The main advantages of using those starting

points is to gain insights about the current knowledge of the proteins and access to

the overall information like if there are any available crystal structures, the phyloge-

netic distribution, known and predicted interactions. The main resource to integrate

the information would be spending hours searching PubMed for related literature,

and connecting it on new associations something that not machine, for the moment,

could not do better than our brains.

13.7.6 Sharing Your Results
1. Upload your RNA-seq experiments to appropriate databases and repositories.

To upload your datasets the main repository is NCBI’s Short Read Archive (SRA)

where you need to register your project and then upload your raw FASTQ files

to it. To upload your assemblies there is the Transcriptome Shotgun Assembly Se-

quence DB (see Table QG13.2). The suggested way to share the annotated dataset is

through the MG-RAST server, this also assures you to have up-to-date annotations,

and it becomes available to be compared with other publicly available datasets.

13.8 Final Remarks
Metatranscriptomics as its relative metagenomics is attracting newcomers from mul-

tiple disciplines. The potential outcome to study both the environmental genome
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and its expression under certain conditions is a promising tool to describe the tax-

onomic and functional diversity out there. There is a hype about the meta-omics

everywhere now, and everyone is trying to sequence; this is great and opens new op-

portunities to learn from a myriad of scientific perspectives. We just want to recom-

mend to be cautious before getting into the omics fashion trend, and be aware that

you need some prerequisites before getting into the adventure: a well-established

and -equipped molecular biology laboratory, some computational hardware, and

the most valuable asset of trained people on both experimental and analytical as-

pects. Take your time to plan the experimental design before getting started; do not

be part of a growing disappointed crowd that ventures without any experimental

design/ controls and thus not able to get trustworthy biological meaningful data,

or people with large experimental background but lacking the required analytical

skills to tackle millions of multivariate data. Recognize your strengths and weak-

nesses, and go for successful collaborations; welcome to and good luck in the vibrant

meta-omics road.
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Table 1. Metatranscriptomic Experimental design (hints)

Technique Protocol Control
library

Recommended
starting material (ng)

Number of
Replicates

Sequencing
depth

Recomended sequencing
platform & run 

Metatranscriptomics RNAseq cDNA 
Input
Control

Minimum of 1 ng 
(TruSeq®) 

Tipically 100 ng cDNA

RNA integrity, check 
nanodrop UV 
spectrums and if 
possible RNA 
degradation with 
Bioanalyzer® 

2 minimum for 
each library, for 
being able to 
estimate 
variances. 

If possible, 
estimate 
species 
diversity (16S 
rRNA 
amplicons). 
Then, calculate 
expected 
average 
genome sizes, 
then calculate 
an 8X minimum 
coverage.

Illumina's MiSEQ 2 x 300 bp (0.3 
– 15 Gb, HiSeq 2500 (10 – 1000 
Gb). 

First check with your provider to 
be able to use the latest 
technology.

Considerations:
Quality
Coverage
Read length
Sample number
Budget

Table 2. Web Resources. This is a list of basic tools and resources that could  help to get through the bioinformatic and statistical analysis 

required for metatranscriptomics.  

Software /
Resource

Notes Method /
Language /

Platform

Input Results
output

Results format URL
References

Basic Linux 
Tutorial

Start here Web resource
Linux/UNIX,  
Windows

- - - http://www.ee.surrey.
ac.uk/Teaching/Unix/
-

Bioconductor 
training 
workflow for 
RNA-seq

Want to try the experience of 
statistical analysis ahead of getting 
your own sequence? This is the 
place to start. It has a guide with 
publicly available data to perform the
whole analysis. Highly 
recommended 

Web resource
R packages

Example 
datasets are 
provided in 
the workflow

Tables
Plots

Raw text
FASTA/FASTQ
plots (png, pdf).

http://www.biocondu
ctor.org/help/workflo
ws/rnaseqGene/ 
- 
(Huber et al. 2015)

BIOM Helpful format if dealing with multiple
samples and probably the next 
standard for reporting abbundances 
results for metagenomics

Python scripts
Linux/UNIX

Clustering 
files

BIOM BIOM matrix 
could be 
converted to 
tabular output 
(biom convert).

http://biom-
format.org/

CD-HIT-est The preferred selection for gene 
clustering at established cut-off 
thresholds

Executables
Linux/UNIX

MultiFASTA 
file

Clusters file, 
and 
representative 
sequences

Raw text
Multi FASTA file

http://weizhongli-
lab.org/cd-hit/

(Huang et al. 2010)

Choosing 
Sequence 
Technology / 
provider

This web sites offer free help to 
choose sequencing technology and 
provider

Web
Any OS

Declare 
number of 
samples, 
sequencing 
library 
preparations, 

Provider 
comparsions

Html http://allseq.com  
and 
https://genohub.com
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sequencing 
coverage, and
budget

Experimental 
Design in 
Differential 
Abundance 
analysis 
(EDDA)

Here you can design your RNAseq 
experiment

Web

R packages
Any OS

Linux/UNIX

Number of 
samples, 
replicates, 

Raw text Raw text / html http://edda.gis.a-
star.edu.sg/dad/

(Luo et al. 2014)

FastX Toolkit A useful software suite that allows to
process initial quality control, 
screening, and filtering of 
sequencing files. This is the place to
start if you just received sequences. 
It is possible to integrate FastX to a 
local installed Galaxy server

Executables
Linux/UNIX

FASTQ FASTA
plot images

MultiFASTA
png, pdf images
(for quality 
boxplots). 

http://hannonlab.cshl
.edu/fastx_toolkit
-

Galaxy 
Server / 
Tutorial

The galaxy servers allows to 
process and manipulate  from raw 
sequences / data / mapping files to 
plots, sequences. 

Source

Web server
Linux/UNIX

Any OS

FASTA
FASTQ
and virtually 
all the known 
formats for 
alignments, 
mappings,  
and biological 
files

Plots,  
alignments, 
mappings.

 Plots (png, 
pdf), raw text, 
alignments 
(SAM, BAM)

https://usegalaxy.org
/ 
https://usegalaxy.org
/u/aun1/p/galaxy101 
-

(Giardine et al. 2005)

Glimmer-Gm Metagenomic gene prediction scripts
Linux/UNIX

FASTA MultiFASTA 
file with gene 
predictions
Gene calling 
scores file

MultiFASTA
Raw text

http://www.cbcb.umd
.edu/software/glimm
er-mg

(Kelley et al. 2012)

Bioconductor Defined by the Bioconductor 
community: “provides tools for the 
analysis and comprehension of high-
throughput genomic data”

R packages
Linux/UNIX

never tried it but it
is stated that it 
could run on 

FASTA
FASTQ
and virtually 
all the known 
formats for 
alignments, 

Raw text
Html
multiFASTA
alginments

Txt
html
multiFASTA
alignment files

http://bioconductor.or
g/install/

(Huber et al. 2015)

Windows (risks 
are on your own).

mappings,  
and biological 
files

R Is a programming language, 
intended for statistical computations 
and analyses.

Source, and 
executables
Any OS

Tables, raw 
text, csv, 
JSON, BIOM, 
FASTQ

Raw text
plots

Raw text
PDF, png

http://cran.r-
project.org/

(Team 2008)

KEGG’s 
Automatic 
Annotation 
Server

Automatted annotation server using 
Kyoto Encyclopedia of Genes and 
Genomes

Web server
Any OS

MultiFASTA 
files

MultiFASTA 
files with 
annotated 
datasets
Metabolic 
pathways 
maps

MultiFASTA
raw text / html
png images

http://www.genome.j
p/tools/kaas/

(Moriya et al. 2007)

Metagenemark Metagenomic gene prediction
Web server
Any OS

FASTA MultiFASTA 
file with gene 
predictions
Gene calling 
scores file

MultiFASTA
Raw text

http://exon.gatech.ed
u/meta_gmhmmp.cgi

(Zhu et al. 2010)

Metagenomics
analysis server
MG-RAST

An amazing web server that allows 
to annotate high-throughput 
metagenomic experiments in both 
taxonomic and functional features. 
This server integrates information 
features from multiple databases 
into its M5NR DB.  there is an API 
(application program interface) 
which allows to access server 
capabilities from terminal. 

Web server
Any OS, works 
best with Firefox,

FASTQ, 
FASTA files, 

MultiFASTA 
files
Abbundance 
tables
Heatmaps
Ordination 
plots

MultiFASTA
BIOM, txt, html
png, pdf

http://metagenomics.
anl.gov/

(Meyer et al. 2008)

Metagenomes
eq
Metastats 

Determine differential abundant 
species, genes and features

Bioconductor R 
package
Web server
Linux/UNIX
Any OS

Abundance 
table (raw 
text, csv file)

R object

Tables with p-
values and 
False 
Discovery 
Rate (FDR) 
corrected 
values. 

Raw text

png, pdf

http://metastats.cbcb
.umd.edu/software.ht
ml

(Paulson et al. 2011)
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Plots

NCBI all 
bacteria

Predicted proteomes of finished 
bacteria genomes

Database
Any OS

Format DB to 
use it with 
BLAST

BLAST DB Raw text / html ftp.ncbi.nih.gov/geno
mes/Bacteria/all.faa.t
ar.gz

NCBI NR DB The reference DB to perform 
annotation, it includes all the known 
proteins deposited on GenBank. The
size of this DB is huge and you will 
need a computer with enough RAM 
to handle it. 

Database Already 
formated DB 
ready to use 
with BLAST 
standalone 
versions

BLAST DB Raw text / html ftp.ncbi.nih.gov/blast/
db/

NCBI's 
Transcriptome 
Shotgun 
Assembly 
(TSA)

TSA hosts assembled sequences of 
transcriptomes, by any method from 
traditional cDNA clone / sequencing 
to NGS datasets

Database BAM 
unannotated 
assembly.
Sequences of 
at least 200 b.
No more than 
10% 
ambigous 
bases.

TSA record 
(Contigs)

GenBank file
FASTA file
ASN.1 file

http://www.ncbi.nlm.
nih.gov/genbank/tsa/

NCBI’s Short 
Read Archive 
SRA

Stores raw sequence data from 
NGS, is the primary archive of NGS 
data. 

Database FASTQ
BAM
qseq
srf

SRA files 
raw 
sequencing 
reads

Dump to 
FASTQ is 
available 
(FASTQ-dump)

http://www.ncbi.nlm.
nih.gov/sra

RNA-
seqlopedia

This is an amazing resource for 
understanding step by step the 
RNA-seq processing. We highly 
recommend it.

Web resource - - - http://rnaseq.uorego
n.edu/  

RNAfold Web 
Server

RNA secondary structure prediction Web server
Standalone 
version Linux / 
UNIX

RNA 
sequence in 
FASTA format

Minimum free 
energy 
structure 
calculation

raw text, html 
PDF, png 

http://rna.tbi.univie.a
c.at/cgi-
bin/RNAfold.cgi 

(Zuker & Stiegler 
1981)

SOAPdenovo Short Oligonucleotide Analysis 
Package (assembler). Designed as 
an Illumina's short read genome 
assembler.

Executables
64-bit Linux, 
minimum 5 G 
RAM

FASTA
FASTQ
BAM

Contigs
Scaffolds
mappings
pregraph

Raw text http://soap.genomics
.org.cn/soapdenovo.
html

(Luo et al. 2012)

Trinity / Trinity 
Galaxy server

Transcriptome assembler. Scripts 

Web server
Linux/UNIX

Any OS

FASTQ Contig file FASTA format http://trinityrnaseq.git
hub.io/ 
https://galaxy.ncgas-
trinity.indiana.edu/ro
ot

(Grabherr et al. 
2011)

tRNAscan-SE tRNA prediction software Web server
Scripts
Linux/UNIX

FASTA
GenBank
EMBL
GCG
IG
Raw 
sequence

 tRNA 
predictions
Run statistics
Predicted 
tRNA 
structures. 

Raw text http://lowelab.ucsc.e
du/tRNAscan-SE/ 

(Lowe & Eddy 1997)

Velvet 
assembler

Short read assembler Scripts 
Linux/UNIX

FASTA
FASTQ

Contigs file
Stats file
Velvet 
assembly file 

FASTA
raw text
asm file (open 
with AMOS)

https://www.ebi.ac.uk
/~zerbino/velvet/

(Zerbino & Birney 
2008)


