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ABSTRACT We sequenced the Bacillus horikoshii 20a genome, isolated from sedi-
ment collected in Cuatro Cienegas, Mexico. We identified genes involved in estab-
lishing antagonistic interactions in microbial communities (antibiotic resistance and
bacteriocins) and genes related to the metabolism of cyanophycin, a reserve com-
pound and spore matrix material potentially relevant for survival in an oligotrophic
environment.

Bacillus horikoshii is an alkaliphilic, aerobic, endospore-forming bacterium, initially
isolated from soil samples (1). We report the genome of B. horikoshii strain 20a

isolated from shallow-water sediment collected in the Churince system in the Cuatro
Cienegas Basin, Coahuila, Mexico (2). Bacillus horikoshii 20a has been studied to better
understand how microbial assembly in communities is influenced by antagonistic
interactions (2). Thus, it is important to identify genes involved in coping with this
oligotrophic environment and genes related to defense responses. The 20a genome
was sequenced with the PacBio RSII system, assembled with Canu v.1.3 (3), and
circularized with Circlator v.1.3 (4). This assembly resulted in two contigs representing
the chromosome (4,277,585 bp, 192.75� mean coverage) and an extrachromosomal
feature (18,297 bp, 122.28� mean coverage). The contigs were annotated with RAST
(5), which identified 24 rRNAs, 72 tRNAs, and 4,366 protein-coding sequences in 457
functional subsystems. Alignment of the 16S rRNA gene against the type strains in the
RDP database (6) returned a 0.991 similarity score between B. horikoshii 20a and B.
horikoshii DSM 8719. However, in the B. horikoshii 20a genome, there are 533 genes that
are not found in any of the two B. horikoshii published genomes (strains DSM 8719 and
FJAT-14233). RAST annotated 12 genes coding for bacteriocins and ribosomally syn-
thesized antibacterial peptides, 48 genes related to resistance to antibiotics and toxic
compounds, and 139 genes involved in dormancy and sporulation.

Interestingly, three genes located in tandem were annotated as genes for cyano-
phycin synthetase (CphA), and two other regions located 2.76 Mb upstream were
identified as genes for cyanophycinase and isoaspartyl dipeptidase, respectively. These
are enzymes involved in the metabolism of cyanophycin, a branched, nonribosomally
synthesized polypeptide consisting of aspartic acid in the backbone and arginine in the
side chain (7). Cyanophycin was originally described in Cyanobacteria, where it accu-
mulates under conditions of intense light, high carbon dioxide concentration, or
phosphate or sulfur starvation (8). Given its high nitrogen content and water insolu-
bility, cyanophycin has been suggested to constitute a reserve material (9, 10). Cyano-
phycin synthetase has also been found in Firmicutes, like Clostridium perfringens, where
it possibly plays a role in spore assembly as a matrix material giving spores their normal
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morphology (11). Both cyanophycin functions, as a nitrogen and carbon reserve and as
a spore material, might be relevant for the survival of B. horikoshii 20a in its oligotrophic
environment. We carried out PSI-BLAST (12) of one of the B. horikoshii 20a putative
CphAs and evaluated the conservation of amino acid residues of the active sites for
cyanophycin synthesis (13). An alignment including the three B. horikoshii 20a putative
CphAs plus the PSI-BLAST results showed that the CphAs have the essential residues
involved in the incorporation of aspartate but lack the essential residues for the
incorporation of arginine. This composition is similar to those of cyanobacterial en-
zymes classified as CphA2 and CphA2= (14). Cyanobacterial CphA2 contributes to the
synthesis of cyanophycin in N2-fixing Cyanobacteria, where cyanophycin seems to play
a role in nitrogen storage (15). Our transcriptome data show expression of the CphA,
cyanophycinase, and isoaspartyl dipeptidase genes in B. horikoshi 20a.

Accession number(s). This genome has been deposited in GenBank under the

GenBank accession numbers CP020880 and CP020881. The versions described in this
paper are the first versions.
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