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ABSTRACT We assembled the complete genome sequences of Bacillus pumilus
strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for
proteins potentially involved in antagonism (bacteriocins) and defense mechanisms
(abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains
harbored prophage sequences. Our results provide insights into understanding the
establishment of microbial interactions.

Bacillus pumilus is a Gram-positive, spore-forming bacterium residing in soil and
water and in some extreme environments. Some strains are resistant to high levels

of radiation and oxidizing agents (1), and some antagonize other bacteria and disturb
the structure and architecture of bacterial biofilms (e.g., Vibrio, Bacillus, and Pseudomo-
nas [2–4]). Here, we report the complete genome sequence of B. pumilus 145 and B.
pumilus 150a from the shallow water system of Churince in Cuatrociénegas, Coahuila,
the detection of genes potentially involved in antagonism of other coinhabiting
species, and the complete genome sequence of the Bacillus phage EZ-2018a. These
findings will give insights into understanding the establishment of biological interac-
tions. Total genomic DNA was sequenced with the PacBio RS II system, assembled with
Canu v.1.3 (5), and circularized with Circlator v.1.3 (6). The B. pumilus 145 assembly
resulted in two contigs representing the chromosome (3,937,399 bp, 265.81� mean
coverage) and the Bacillus phage EZ-2018a (118,485 bp, 486.825� mean coverage),
whereas the B. pumilus 150a assembly resulted in one contig (3,747,740 bp, 269.37�

mean coverage). In the B. pumilus clade, the gene gyrB is the most informative to
distinguish between closely related species (7). NCBI BLAST alignments (8) of gyrB
showed 98% similarity between B. pumilus BAT47140 and B. pumilus 145 and 100%
identity between B. pumilus WP_041816108 and B. pumilus 150a. We used Rapid
Annotations using Subsystems Technology (RAST) (5) for genome annotation. Eight
rRNA copies, 81 tRNAs, and 4,211 protein-coding sequences in 459 functional subsys-
tems were identified in the B. pumilus 145 genome, and eight rRNA copies, 82 tRNAs,
and 3,827 protein coding sequences in 466 subsystems in the B. pumilus 150a genome.
There are 59 genes involved in virulence, disease, and defense in B. pumilus 145, and
61 in B. pumilus 150a. Twelve genes related to the bacteriocin stress response and one
conferring tolerance to colicin E2 were annotated in both strains. Both strains harbored
prophage sequences, as indicated by PHAST (9). B. pumilus 145 contained four intact
prophage regions in the chromosome and the Bacillus phage EZ-2018a, whereas B.
pumilus 150a harbored two intact prophage regions in its chromosome. A gene coding
for an abortive infection bacteriophage resistance protein (Abi) belonging to the Abi_2
family was detected in one of the prophage regions of B. pumilus 145. This defense
mechanism is a cell death system activated by phage infection and provides protection
to the bacterial population by limiting viral replication. Top hits in a PSI-BLAST search
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(10) indicated that a similar gene (91% amino acid identity) was found in Bacillus
safensis and in Bacillus subtilis (58% amino acid identity), but it was not present in any
other B. pumilus sequenced genome, suggesting that B. pumilus 145 acquired Abi
through a mobile genetic element. On the other hand, B. pumilus 150a contained AzlC
and AzlD genes that codify for branched-chain amino acid transport proteins possi-
bly involved in conferring resistance to 4-azaleucine—previously detected in other
Bacillus genomes, but not in any other B. pumilus (11, 12). This leucine analogue is a
potent growth inhibitor in several bacteria due to its incorporation into proteins in
place of leucine (13, 14). 4-Azaleucine is produced by Streptomyces (15), one of the most
abundant Actinobacteria in Cuatrociénegas (16).

Accession number(s). These genomes have been deposited in GenBank under the
accession numbers CP027034, CP027116, and CP027117. The versions described in this
paper are the first versions.
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